December 2017 Sky Guide PDF Print E-mail

This page is dedicated to the practical observer including :

 

OBSERVING GUIDE

(Please note all times are UT unless otherwise stated and are based on an observing location of Belfast and covers the month of December)

The Sun

At the start of the month, the Sun rises at 08:25 and sets at 16:00. By month's end, it rises at 08:50 and sets at 16:05.

 

The Planets

Mercury is at inferior conjunction on the 13th and is visible in the morning sky towards the end of the month. At month's end, it rises at 07:00 and is mag -0.2 in Ophiuchus.

Venus is visible at the start of the month as a morning object, rising at 07:35 and is mag -3.8. It is lost to the twilight after the 1st week of the month.

Mars is a morning object this month, moving from Virgo to Libra. It rises at around 04:05 and brightens from mag +1.7 to mag +1.5 during the month.

Jupiter is a morning object this month in Libra. It rises at 05:45 at the start of the month and by month's end, it rises at 04:20. It brightens from mag -1.6 to mag -1.7 during the month.

Saturn is at conjunction on the 21st and not visible this month.

Uranus is visible in the evening sky this month in Pisces. During the month, it is visible as soon as darkness falls and sets at 02:05 by month's end. It fades from mag +5.7 to mag +5.8 and lies near to Torcularis Septentrionalis (Omicron (ο) Piscium, mag +4.3) during the month.

Neptune is at eastern quadrature on the 3rd and is visible in the evening sky this month in Aquarius. During the month, it is visible as soon as darkness falls and sets at 21:50 by month's end. It maintains its brightness at mag +7.9 and lies near to Lambda (λ) Aquarii, mag +3.7 during the month.

The Moon

The full moon is on the 3rd (15:47). The last quarter moon is on the 10th (07:51) with the new moon on the 18th (06:30). The first quarter moon is on the 26th (09:20). The full moon on the 3rd falls within the definition of the perigee-syzygy of the Earth-Moon-Sun system phenomenon.

Occultations

8th pm 65% waning gibbous and Regulus (Alpha (α) Leonis, mag +1.4) – between around 21:25 and 22:20. This event will have started prior to moonrise at 22:07.

31st am 94% waxing gibbous and Aldebaran (Alpha (α) Tauri, mag +0.9) – between around 01:00 and 02:00.

Regular Stuff

3rd pm the full moon lies E of Aldebaran (Alpha (α) Tauri, mag +0.9) at 18:00.

13th am the 22% waning crescent lies NE of Spica (Alpha (α) Virginis, mag +1.0) and N of Mars at 05:00.

14th am the 14% waning crescent lies E of Mars and N of Jupiter at 06:00.

15th am the 8% waning crescent lies SE of Jupiter at 06:00.
24th pm the 34% waxing crescent lies E of Neptune at 18:00.

27th pm the 64% waxing gibbous lies S of Uranus at 18:00.

Meteors

The best time to observe meteor showers is when the moon is below the horizon; otherwise its bright glare limits the number you will see especially the fainter ones. Below is a guide to this month's showers.

The Geminids peak in the morning of the 14th with a ZHR of 120. It is one of the main showers of the year and is well placed to put on a good show. The radiant rises at around 20:00 on the 13th. A 15% waning crescent moon rises at 04:10 on the 14th in Libra, but is unlikely to interfere too much. The meteors are of a medium speed – 35 km/s.

The Ursids peak in the morning of the 22nd with a ZHR of 10. The radiant is circumpolar and this combined with the 10% waxing crescent moon setting in Capricornus by 19:15 on the 21st, allows for a full night's window to observe this shower. Meteor speeds are similar to the Geminids – 32 km/s.

There may be additional minor showers this month, details of which can be found in the below Information Sources and Links Section.

Asteroids

Asteroid (349) Dembowksa is at opposition on the 1st in Taurus. It is mag +9.6 and visible from 18:00 on the evening of the 1st.

Asteroid (20) Massalia is at opposition on the 17th in Taurus. It is mag +8.4 and visible from 18:00 on the evening of the 17th.

Finder charts and further information about other fainter asteroids can be found in the below Information Sources and Links Section.

Comets

There are no bright comets this month.

Finder charts and further information about the above and other fainter comets can be found in the below Information Sources and Links Section. Any of the above estimates are based on current information at the time of writing the guide and can be wrong - "Comets are like cats; they have tails, and they do precisely what they want", David H Levy.

Deep Sky

On the deep sky front this month, galaxies M81 and M82 can be observed in Ursa Major. In Andromeda, M31 - The Andromeda galaxy can be observed along with its satellite galaxies M32 and M110. In Perseus, there is the open cluster M34 and the excellent Double Cluster - NGC 869 and 884. In Triangulum, there is the galaxy M33. In Auriga there are three open clusters M36, M37 and M38 and also M35 in Gemini. Taurus has the excellent Pleiades - M45, the Hyades and also M1 - The Crab Nebula. Orion returns to our skies with M42 - The Great Orion Nebula and also Cancer with M44 - The Beehive Cluster.

General Notes
Always keep an eye out for Aurorae. The winter solstice is on the 21st which sees the shortest day of the year and after this date the nights shorten and the days lengthen. This also sees the beginning of winter. Other interesting naked eye phenomena to look out for include the Zodiacal Light and the Gegenschein. Both are caused by sunlight reflecting off dust particles which are present in the solar system.

The Zodiacal Light can be seen in the West after evening twilight has disappeared or in the East before the morning twilight. The best time of year to see the phenomenon is late-Feb to early-April in the evening sky and September/October in the morning sky - it's then that the ecliptic, along which the cone of the zodiacal light lies, is steepest in our skies. The Gegenschein can be seen in the area of the sky opposite the sun. To view either, you must get yourself to a very dark site to cut out the light pollution. When trying to observe either of these phenomena, it is best to do so when the moon is below the horizon. A new appendix has been added explaining some of the more technical terms used in the guide.

Clear Skies

Neill McKeown


Information Sources Used

www.skyviewcafe.com ; Sky at Night Magazine Observing Guide and CD;
www.aerith.net ; http://cometchasing.skyhound.com ;
www.ast.cam.ac.uk/%7Ejds/;
http://kometen.fg-vds.de/fgk_hpe.htm ;
www.rasnz.org.nz ;
Stardust Magazine;
http://britastro.org/computing/charts_asteroid.html ;
http://in-the-sky.org ;
http://www.nightskyhunter.com/index.html
http://www.eagleseye.me.uk/Sky/Wordpress/;
http://astropixels.com/ephemeris/ephemeris.html;
http://eco.mtk.nao.ac.jp/cgi-bin/koyomi/cande/phenomena_en.cgi;

Philip's Stargazing 2014;
Patrick Moore's 2014 Yearbook of Astronomy;
www.heavens-above.com;
www.spaceweather.com ;
meteorshowersonline.com/calendar.html ;
www.timeanddate.com/astronomy/;
http://www.imo.net/calendar/2014 - International Meteor Organisation;
http://messier.seds.org/ - The Messier Catalogue website;
www.seds.org/messier/xtra/ngc/ngc.html - NGC Catalogue website;
www.irishastronomy.org - Irish Federation of Astronomy Societies Website;
http://irishastro.org.uk/- Irish Astronomical Association website;
www.niaas.co.uk - Northern Ireland Amateur Astronomy Society;

 

Appendix

The ZHR or Zenithal Hourly Rate is the number of meteors an observer would see in one hour under a clear, dark sky with a limiting apparent magnitude of 6.5 and if the radiant of the shower were in the zenith. The rate that can effectively be seen is nearly always lower and decreases as the radiant is closer to the horizon. The Zenith is the overhead point in the sky.

The radiant is the point in the sky, from which (to a planetary observer) meteors appear to originate, i.e. the Perseids, for example, are meteors which appear to come from a point within the constellation of Perseus. When the radiant is quoted as "circumpolar", it is never below the horizon and visible all night, otherwise the times quoted are when the constellation in which the radiant lies rises above the horizon in the East.

A fireball is defined by the International Astronomical Union as a meteor brighter than any of the planets, i.e. magnitude -4 or brighter. The International Meteor Organisation alternatively defines it as a meteor which would have a magnitude of -3 or brighter at the zenith.

The ° symbol in the guide is that for degrees. A degree is two full moon widths to give an idea for judging any distances quoted in the guide. There are 60 arcminutes in a degree.

An asterism is a collection of stars seen in Earth's sky which form simple patterns which are easy to identify, i.e. the Big Dipper. They can be formed from stars within the same constellation or by stars from more than one constellation. Like the constellations, they are a line of sight phenomenon and the stars whilst visible in the same general direction, are not physically related and are often at significantly different distances from Earth.

Mag is short for magnitude which is the measure of an object's brightness. The smaller the number, the brighter the object. The brightest object in the sky is the Sun at mag -26, the full moon is mag -12 and Venus the brightest planet is mag -4. The brightest stars are mag -1. If there is a 1 mag difference between two objects - there is a difference in brightness of a factor of 2.5 between the two objects. For example the full moon is eight magnitudes brighter than Venus on average which means it is 1,526 times brighter than Venus. Objects down to mag +6 can be seen with the naked eye under very dark skies.

Local time is always quoted in the guide and this means for November - February - universal time (UT)/GMT is used and for April to September - daylight savings time (DST, = GMT+1). For the months of March and October when the clocks go forward/back respectively, both times will be used and attention should be paid to any times at the end of these months for that change.

Deep Sky Objects such as galaxies, nebulae and star clusters are classified in catalogues such as the Messier catalogue for objects like M44 - M for Messier. Another example of a catalogue would the New General catalogue whose objects have the prefix NGC. There are links for websites to both catalogues in the section above.
Perihelion is the point in the orbit of a planet, asteroid or comet where it is at the nearest point in its orbit to the sun. It is the opposite of Aphelion, which is when the object is at the farthest point in its orbit from the sun. For the earth, the comparative terms used are perigee and apogee and for the moon, pericynthion and apocynthion are sometimes used.


 

info

The Planets

From Earth - Mercury and Venus are the inner planets in the solar system and Mars, Jupiter, Saturn, Uranus and Neptune are the outer planets. Below is a short guide as to how both the inner and outer planets move around the sun. The above pictorial guide should hopefully help in this.

The Inner Planets

These are best seen when at Greatest Eastern/Western elongation and are not visible when at either Inferior/Superior conjunction. Greatest Eastern elongation is when the inner planet is at its furthest point east from the sun as seen from Earth and visible in the evening sky in the West after sunset, Western elongation is when its at its furthest point west from the sun as seen from Earth and visible in the morning sky in the East before sunset. Inferior conjunction occurs when the inner planet is between the Sun and the Earth. Superior conjunction occurs when the inner planet is on the other side of the Sun as seen from Earth.

From our Northerly latitudes, the ecliptic, along which the planets move, lies at a very shallow angle to the horizon after sunset in the autumn and before sunrise in the spring. This means that any of the planets will be difficult to see when fairly close to the Sun in the evening sky in the autumn, or in the morning sky in the spring. In particular, Mercury is more or less invisible from here when at Eastern elongation in the autumn, or at Western elongation in the spring, because it lies so close to the horizon and is never above the horizon except in daylight or bright twilight.

The normal cycle for an inner planet is Superior Conjunction – Greatest Eastern Elongation – Inferior Conjunction – Greatest Western Elongation - Superior Conjunction. After superior conjunction, the planet moves away from the Sun as seen from Earth and becomes visible in the evening sky after a period of time. It then moves past the point of Greatest Eastern Elongation and moves back towards the Sun as seen from Earth until a point when it is not visible and at Inferior Conjunction. After this the planet appears in the morning sky for a time, before again slipping into the Sun’s glare as seen from Earth. The duration of this cycle will depend on the planet’s closeness to the Sun, i.e. Mercury completes the above cycle in around 4 months.

The Outer Planets

These are best seen when at opposition and are not visible when at conjunction. Opposition occurs when the earth is between the sun and the outer planet. It is the best time to observe them because the planet is visible all through the night and it is due South and at its highest at about midnight. The planet is also at its closest point in its orbit to Earth – making it appear brighter. Conjunction occurs when the outer planet is on the other side of the Sun as seen from Earth.
If the planet is at or near it furthest point South along the ecliptic, then it won’t get very high in the sky even at opposition – just as the Sun never gets high in the sky in midwinter. This happens when opposition occurs near midsummer when the planet is opposite the Sun in the sky and in midsummer the Sun is high, so the planet will be low. The opposite of course applies in winter.
The normal cycle for an outer planet is Conjunction – Western Quadrature – Opposition – Eastern Quadrature - Conjunction. After conjunction, the planet moves away from the Sun as seen from Earth and becomes visible again. The planet from this point on rises earlier and earlier in the morning sky and eventually becomes visible in the evening sky. At Western Quadrature it is at its highest at sunrise and by opposition it is in the same position by midnight. By Eastern Quadrature, it is past its best and is at its highest at sunset, meaning it is rising in daytime and setting earlier and earlier until a point when it sets too close to the Sun as seen from Earth and is no longer visible. The duration of this cycle will depend on the planet’s closeness to the Sun, i.e. Jupiter completes the above cycle in around 13-14 months.


 

ISS Passes

For detailed sightings information and sky charts, check out Heavens Above or Calsky .

Iridium Flares

Every night there are a number of Iridium flares of varying brightness, some can be up to Mag-8 which are very impressive to watch. Check out Heavens Above or Calsky for the latest predictions.

Welcome to the Forum of the Northern Ireland Amateur Astronomy Society, whether you've come just to browse or wish to join in.
You'll find a wealth of information both here and on our website at www.niaas.co.uk, and we welcome any questions about buying a telescope, observing, or any other astronomy-based matters.

Enjoy your stay.

Philip Matchett
NIAAS Webmaster
 

We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of the site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

I accept cookies from this site.

EU Cookie Directive Module Information